Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257994

RESUMEN

The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.

2.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37745330

RESUMEN

Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. This is in part due to their large genome sizes and difficulty in obtaining sequenceable material. In this manuscript, we leveraged a recently-isolated, laboratory-tractable Entomophthora muscae isolate and improved long-read sequencing to obtain a largely-complete entomophthoralean genome. Our E. muscae assembly is 1.03 Gb, consists of 7,810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with other available (transcriptomic and genomic) datasets from entomophthoralean fungi, we provide new insight into the biology of these understudied pathogens. We offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex. Our findings suggest that substantial taxonomic revision is needed to define species within this group and we provide recommendations for differentiating strains and species in the context of the existing body of E. muscae scientific literature. We show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity, despite the presence of machinery to defend against transposable elements(RNAi). In addition, we find that E. muscae and its closest allies are enriched for M16A peptidases and possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We find that E. muscae has an expanded group of acid-trehalases, consistent with trehalose being the primary sugar component of fly (and insect) hemolymph. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae's species-specific, biotrophic lifestyle. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

3.
Insects ; 14(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38132586

RESUMEN

In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, are abundant and spreading. Four species of naturally occurring entomopathogenic fungi have previously been reported as infecting these planthoppers, with two of these causing epizootics. Nymphal- and adult-stage lanternflies in Pennsylvania and New York were surveyed for entomopathogenic fungal infections from October 2021 to November 2023, and assays were conducted to confirm the pathogenicity of species that were potentially pathogenic. Beauveria bassiana was the most abundant pathogen, but we report an additional 15 previously unreported species of entomopathogenic fungi infecting spotted lanternflies, all in the order Hypocreales (Ascomycota). The next most common pathogens were Fusarium fujikuroi and Sarocladium strictum. While infection prevalence by species was often low, probably impacted to some extent by the summer drought in 2022, together these pathogens caused a total of 6.7% mortality. A significant trend was evident over time within a season, with low levels of infection among nymphs and higher infection levels in mid- and late-stage adults, the stages when mating and oviposition occur.

4.
Microorganisms ; 11(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37512833

RESUMEN

A meta-analysis based on the published literature was conducted to evaluate the breadth of host ranges of arthropod pathogens in the fungal subphylum Entomophthoromycotina. The majority of pathogens in this subphylum infect insects, although arachnids (especially mites), collembola, and myriapods are also used as hosts. Most species (76%) have specialized host ranges and only infect arthropods in one host family. The breadth of host ranges in the Entomophthoromycotina is generally greater for species in more basal groups (Conidiobolaceae and Neoconidiobolaceae), where most species are soil-borne saprobes and few are pathogens. The Batkoaceae is a transitionary family in which all species are pathogens and both generalists and specialists occur. Among pathogen-infecting insects, Hemiptera and Diptera are the most commonly infected insect orders. Within the Hemiptera, hosts in the suborder Sternorrhycha were infected by more fungal species than the Auchenorrhyncha and Heteroptera.

5.
J Insect Sci ; 23(3)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279521

RESUMEN

The microsporidian, Nosema maddoxi Becnel, Solter, Hajek, Huang, Sanscrainte & Estep, infects brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), populations in North America and Asia and causes decreased fitness in infected insects. This host overwinters as adults, often in aggregations in sheltered locations, and variable levels of mortality occur over the winter. We investigated pathogen prevalence in H. halys adults before, during, and after overwintering. Population level studies resulted in detection of N. maddoxi in H. halys in 6 new US states, but no difference in levels of infection by N. maddoxi in autumn versus the following spring. Halyomorpha halys that self-aggregated for overwintering in shelters deployed in the field were maintained under simulated winter conditions (4°C) for 5 months during the 2021-2022 winter and early spring, resulting in 34.6 ± 4.8% mortality. Over the 2020-2021 and 2021-2022 winters, 13.4 ± 3.5% of surviving H. halys in shelters were infected with N. maddoxi, while N. maddoxi infections were found in 33.4 ± 10.8% of moribund and dead H. halys that accumulated in shelters. A second pathogen, Colletotrichum fioriniae Marcelino & Gouli, not previously reported from H. halys, was found among 46.7 ± 7.8% of the H. halys that died while overwintering, but levels of infection decreased after overwintering. These 2 pathogens occurred as co-infections in 11.1 ± 5.9% of the fungal-infected insects that died while overwintering. Increasing levels of N. maddoxi infection caused epizootics among H. halys reared in greenhouse cages after overwintering.


Asunto(s)
Heterópteros , Animales , Estaciones del Año
6.
J Invertebr Pathol ; 199: 107939, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37236421

RESUMEN

An epizootic caused by fungal pathogens occurred among Halyomorpha halys, brown marmorated stink bugs, while they were overwintering, with infections also occurring after overwintering. We report that one of the two pathogens responsible was Colletotrichum fioriniae (Marcelino & Gouli) Pennycook; a species well known as a plant pathogen and endophyte and which has only previously been reported naturally infecting elongate hemlock scales, Fiorinia externa. To prove pathogenicity, H. halys adults challenged with conidia died from infections and the fungus subsequently produced conidia externally on cadavers.


Asunto(s)
Colletotrichum , Heterópteros , Animales , Plantas , Cadáver
7.
Front Insect Sci ; 3: 1127682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469466

RESUMEN

The entomopathogenic fungus Beauveria bassiana is cosmopolitan and known to infect a variety of sap-sucking pests like aphids, mealybugs, and scales in the order of Hemiptera. In Fall 2017, spotted lanternfly (SLF) adults killed by the fungal entomopathogen B. bassiana were found in Berks County, Pennsylvania. In 2018-2020 we collected SLF and nearby non-target insects killed by Beauveria spp. from 18 field sites in southeastern Pennsylvania. We identified 159 Beauveria isolates from SLF and six isolates from non-targets. Five isolates of B. bassiana and one isolate of B. brongniartii were identified from the non-targets. Based on sequence data from the nuclear B locus (Bloc) intergenic region, all the isolates from SLF were identified as B. bassiana, but there were 20 different strains within this species, grouped into two clades. Three B. bassiana strains (A, B, and L) were found in most field sites and were the most prevalent. Representative isolates for these three strains were used in laboratory bioassays and were compared to a commercial B. bassiana strain (GHA). Strain B was inferior to A, L, and GHA against nymphs; strains A and L had greater efficacy than B and GHA against adults. We also quantified conidial production on SLF cadavers. This paper discusses the diversity of these B. bassiana strains in SLF populations and implications for biological control of this abundant invasive.

9.
J Fungi (Basel) ; 8(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36012777

RESUMEN

Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle.

10.
J Invertebr Pathol ; 194: 107821, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030881

RESUMEN

The entomopathogenic fungi Batkoa major and Beauveria bassiana caused co-epizootics in populations of invasive spotted lanternflies, Lycorma delicatula, in 2018 in northeastern North America. Although first described from North America in 1888, the biology and ecology of Batkoa major had not been studied since that time. This entomophthoralean fungus found infecting L. delicatula in 2018 produces conidia and rhizoids similar in appearance to the original description. We conducted laboratory bioassays to investigate infection of different ages and sexes of these planthoppers, inoculating via showered conidia. All nymphs, and male and female adults were susceptible, dying in 4.3-6.7 days. Adult males died more quickly than adult females or fourth instars. Batkoa major grew out of cadavers of adult males more frequently than adult females or fourth instar nymphs. Rhizoids that provide attachment of cadavers to substrates were produced from adult cadavers more frequently than conidia. Resting spores were not observed in vivo or in vitro in the lab, or in the field.


Asunto(s)
Beauveria , Entomophthorales , Hemípteros , Animales , Cadáver , Femenino , Masculino , Ninfa , Control Biológico de Vectores , Esporas Fúngicas
11.
PLoS One ; 17(5): e0261912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511895

RESUMEN

Populations of the entomopathogenic fungus Batkoa major were analyzed using sequences of four genomic regions and evaluated in relation to their genetic diversity, insect hosts and collection site. This entomophthoralean pathogen killed numerous insect species from 23 families and five orders in two remote locations during 2019. The host list of this biotrophic pathogen contains flies, true bugs, butterflies and moths, beetles, and barkflies. Among the infected bugs (Order Hemiptera), the spotted lanternfly (Lycorma delicatula) is a new invasive planthopper pest of various woody plants that was introduced to the USA from Eastern Asia. A high degree of clonality occurred in the studied populations and high gene flow was revealed using four molecular loci for the analysis of population structure. We did not detect any segregation in the population regarding host affiliation (by family or order), or collection site. This is the first description of population structure of a biotrophic fungus-generalist in the entomopathogenic Order Entomophthorales. This analysis aimed to better understand the potential populations of entomopathogen-generalists infecting emerging invasive hosts in new ecosystems.


Asunto(s)
Mariposas Diurnas , Entomophthorales , Hemípteros , Animales , Ecosistema , Hongos , Hemípteros/microbiología , Humanos , Insectos , Estaciones del Año
12.
J Invertebr Pathol ; 186: 107689, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34774856

RESUMEN

In the eastern United States, populations of the invasive spotted lanternfly, Lycorma delicatula, can be infected by native fungal entomopathogens, including Batkoa major and Beauveria bassiana. In some areas of southeastern Pennsylvania, localized population collapses have been observed in L. delicatula populations to be caused by these pathogens. Two additional fungal pathogens were discovered infecting L. delicatula at low levels, and these were identified as Metarhizium pemphigi and Ophiocordyceps delicatula, a new species that has not been previously described. Therefore, four species of native entomopathogenic fungi have now been documented infecting this abundant, invasive planthopper that is spreading in the United States.


Asunto(s)
Agentes de Control Biológico/farmacología , Hemípteros/microbiología , Interacciones Huésped-Patógeno , Hypocreales/clasificación , Hypocreales/fisiología , Control de Insectos , Control Biológico de Vectores , Animales , Agentes de Control Biológico/clasificación , Especies Introducidas , Metarhizium/fisiología
13.
Vet Pathol ; 58(6): 1152-1157, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34256622

RESUMEN

European gypsy moths (Lymantria dispar dispar) are an invasive species in North America, and are listed by the International Union for the Conservation of Nature as one of the 100 most destructive invasive species worldwide. They have several known viruses, some of which are used as biological control agents. However, there are no detailed descriptions of many entomopathogenic viral infections, including in European gypsy moths, using bright-field microscopy. In this study, 11 European gypsy moth caterpillars were evaluated histologically: 4 were experimentally infected with Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV; Baculoviridae); 4 were experimentally infected with Lymantria dispar cytoplasmic polyhedrosis virus (LdCPV; Reoviridae); 3 control animals were uninfected. A complete tissue set was evaluated in all animals from all groups using bright-field microscopy, including epidermis, cuticle, striated muscle, tracheae, foregut, midgut, hindgut, Malpighian tubules, hemocytes, fat body, and nervous system. LdMNPV-infected caterpillars had marked karyomegaly and intranuclear viral inclusions in cells of the epidermis, tracheae, fat body, and hemocytes. LdMNPV-infected caterpillars also had hyperplasia and hypertrophy of epidermal and tracheal epithelial cells. LdCPV-infected caterpillars had numerous granular eosinophilic intracytoplasmic viral inclusions in midgut epithelial cells. Both LdMNPV-infected and LdCPV-infected caterpillars had atrophy of fat body adipocytes; this change was more pronounced in LdCPV-infected caterpillars. This work provides the first detailed descriptions of these viral infections in European gypsy moth caterpillars using bright-field light microscopy and provides images of normal histology from control caterpillars.


Asunto(s)
Mariposas Nocturnas , Nucleopoliedrovirus , Reoviridae , Animales , Larva , América del Norte
14.
Environ Entomol ; 50(5): 1007-1015, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34314499

RESUMEN

While emphasis with entomopathogens has often been on inundative releases, we describe here historic widespread inoculative releases of a fungal entomopathogen. Several U.S. states and municipalities conducted inoculative releases of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), pathogen Entomophaga maimaiga Humber, Shimazu et Soper (Entomophthorales: Entomophthoraceae) after 1993, as gypsy moth populations spread into the Midwest and North Carolina. This Japanese pathogen first caused epizootics in northeastern North America in 1989 and methods for its inoculative release were tested and proven to be effective from 1991 to 1993. After 1993, spores in soil or in late instar cadavers were collected during or after epizootics and were released inoculatively into newly established populations of this spreading invasive; the goal was that spores would overwinter and germinate the next spring to infect larvae, thus speeding pathogen spread and hastening the development of epizootics in newly established populations. The fungus was released in gypsy moth populations that were separated from areas where the fungus was already established. In particular, extensive releases by natural resource managers in Wisconsin and Michigan aided the spread of E. maimaiga throughout these states. Where it has become established, this acute pathogen has become the dominant natural enemy and has exerted considerable influence in reducing gypsy moth damage. While this pathogen most likely would have invaded these new regions eventually, releases accelerated the spread of E. maimaiga and helped to reduce impacts of initial outbreaks, while further outbreaks were reduced by the pathogen's subsequent persistence and activity in those areas.


Asunto(s)
Entomophthorales , Mariposas Nocturnas , Animales , Larva , Estaciones del Año
15.
J Econ Entomol ; 113(6): 2650-2656, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-32978621

RESUMEN

The Asian longhorned beetle (Anoplophora glabripennis [Motschulsky]) is an invasive wood-boring beetle that threatens urban trees and forests in North America and Europe. The entomopathogenic fungus Metarhizium brunneum Petch strain F52 can infect and kill A. glabripennis adults. Products containing this fungus were available for commercial use in the United States but not registered for Asian longhorned beetle. This study tested different formulations and application rates of M. brunneum F52 microsclerotial granules for their potential development for management of A. glabripennis adults. Three application rates of M. brunneum microsclerotial granules relative to a 1× formulation from previous experiments (0.03 g/cm2; 2× = 0.06 g/cm2 and 3× = 0.09 g/cm2) were exposed on tree trunks for 4-wk periods during May-September. Increased application rates had better retention (% of initial g applied) than the 1× rate, rather than greater weathering loss. Microsclerotia at the 2× application produced 5.05 × 106 conidia/cm2, which was 18 times more conidia than the 1× application. Since A. glabripennis is under active eradication, bioassays with adult beetles were carried out in a quarantine laboratory, using the formulation samples from field exposures. The 2× application resulted in faster beetle mortality. The 3× and 2× rates were not significantly different in retention of the formulation, conidial production, or mortality, but 2× produced the most conidia per gram applied (3.92 × 109 conidia/g). An augmented formulation containing 70% M. brunneum by weight, rather than 50%, produced significantly more conidia and faster beetle mortality than the 50% formulation.


Asunto(s)
Escarabajos , Hypocreales , Metarhizium , Animales , Europa (Continente) , América del Norte , Control Biológico de Vectores
16.
Environ Entomol ; 49(4): 854-864, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32488261

RESUMEN

Spotted lanternfly, Lycorma delicatula (White), is an invasive Asian insect that was initially found in Berks County, Pennsylvania, in 2014. As of early 2020, this pest had been found in five more eastern states and it is expected to continue to expand its geographical range. Lycorma delicatula is highly polyphagous but seems to prefer tree-of-heaven, Ailanthus altissima. However, grape growers in Pennsylvania have reported significant damage and loss of vines caused by L. delicatula adults. In fall 2018, two fungal entomopathogens (Beauveria bassiana and Batkoa major) drove localized collapses in L. delicatula populations in Berks County, Pennsylvania. In 2019, we tested applications of a commercialized mycoinsecticide based on B. bassiana strain GHA on L. delicatula populations in a public park in southeastern Pennsylvania. A single application of B. bassiana reduced fourth instar nymphs by 48% after 14 d. Applications of B. bassiana to L. delicatula adults in the same park resulted in 43% mortality after 14 d. Beauveria bassiana spores remained viable on foliage for 5-7 d after spraying. We also conducted semi-field bioassays with B. bassiana GHA (formulated as BoteGHA and Aprehend) and another mycoinsecticide containing Isaria fumosorosea Apopka Strain 97 against L. delicatula adults feeding on potted grapes. All the mycoinsecticides killed ≥90% of adults after 9 d using direct applications. Aprehend killed 99% of adults after 9 d with exposure to residues on sprayed grapes. These data show that fungal entomopathogens can help to suppress populations of L. delicatula in agroecosystems and natural areas.


Asunto(s)
Beauveria , Hemípteros , Hypocreales , Animales , Ninfa , Pennsylvania , Control Biológico de Vectores
17.
J Invertebr Pathol ; 173: 107385, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325073

RESUMEN

Sirex noctilio is an invasive Eurasian woodwasp that can kill pine (Pinus spp.) trees and has been introduced to areas of the Southern Hemisphere where plantations of introduced pines are grown. The main method of control of this invasive pest has been introduction and augmentation of a parasitic nematode, Deladenus siricidicola. The strain of D. siricidicola used for biological control of S. noctilio in the Southern Hemisphere originated in Sopron, Hungary. The genotype of D. siricidicola used for biological control sterilizes females of the strain of S. noctilio present in Australia. However, different strains of S. noctilio have been introduced to different geographic areas that have been invaded and different combinations of D. siricidicola and S. noctilio genotypes vary in whether these nematodes sterilize female S. noctilio. Moreover, even in the event of sterilization, partial sterilization can occur, where not all woodwasp eggs are compromised. Sirex noctilio has now invaded North America accidentally, putatively accompanying D. siricidicola, but these host/parasite pairings do not result in female sterilization. More information is needed about the genetic diversity of D. siricidicola both where it is native and introduced. In addition, the host range of these nematodes is necessary to understand to evaluate their potential use in areas where pine communities are native. We collected and evaluated Deladenus parasitizing S. noctilio, S. juvencus, and associated insects in Hungary, Denmark, Spain, and Italy, as well as in the United States. Phylogenetic analyses were unable to fully provide fine resolution, although some community structure was evident. Many D. siricidicola samples from Hungary had identical COI and ITS sequences to the strain of D. siricidicola accidentally introduced to North America putatively when S. noctilio invaded. The same or similar strains of D. siricidicola parasitize two different Sirex species that utilize pines as well as a Sirex parasitoid and a pine-boring beetle, demonstrating some limited variability in host specificity of this species. These results highlight the genetic diversity of Deladenus siricidicola in its native range in Europe.


Asunto(s)
Variación Genética , Control de Insectos , Control Biológico de Vectores , Tylenchida/genética , Animales , Europa (Continente) , Femenino , Interacciones Huésped-Parásitos , Himenópteros , Especies Introducidas , América del Norte
18.
J Insect Sci ; 20(2)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32112650

RESUMEN

Nine strains of five species of entomopathogenic hypocrealean fungi were tested against adults of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). These strains have been developed as commercial biopesticide products in the United States, Brazil, South Korea, or the European Union (EU). Metarhizium anisopliae (Metschnikoff) (Hypocreales: Clavicipitaceae) ESALQ E-9 and Metarhizium brunneum (Petch) F52 (formerly M. anisopliae F52) (Hypocreales: Clavicipitaceae) killed 100% of treated beetles with the shortest survival times. Virulence differed among the five strains of Beauveria bassiana (Balsamo) (Hypocreales: Cordycipitaceae) tested, ranging from 0 to 77.3% mortality within 28 d. Two Isaria fumosorosea (Wize, 1904) (Hypocreales: Cordycipitaceae) (formerly Paecilomyces fumosoroseus) strains and the Lecanicillium muscarium (Petch) Zare & Gams (Hypocreales: Cordycipitaceae) strain used in Mycotal were not pathogenic to A. glabripennis adults. Within the entomopathogenic fungi tested, the Metarhizium strains may be the most appropriate for further evaluation.


Asunto(s)
Beauveria/patogenicidad , Escarabajos/microbiología , Metarhizium/patogenicidad , Control Biológico de Vectores/métodos , Animales , Hypocreales/patogenicidad , Virulencia
19.
J Invertebr Pathol ; 169: 107303, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812561

RESUMEN

Nosema maddoxi Becnel, Solter, Hajek, Huang, Sanscrainte, & Estep, a microsporidian species native to the United States, has been found infecting the invasive brown marmorated stink bug, Halyomorpha halys (Stål). Microsporidian infections in insects often shorten lifespans, decrease fecundity, prolong development, and stunt growth. This study was conducted to determine the impact of N. maddoxi on H. halys fitness. Adult females (2 doses) and nymphs (1 dose) drank suspensions of N. maddoxi spores to promote infection. Adult females receiving a high dose died faster than the controls. Nosema maddoxi infections impacted female egg production and egg viability at both doses compared with the controls. Infections were transmitted to 34.9% of adult males caged with infected females. As the number of days after inoculation increased, infection intensity (# spores found within an infected individual) for both adult treatments transitioned from low-intensity to high-intensity. Infected nymphs died significantly sooner than the controls. Of the treated nymphs, 55.9% died before molting into the fourth instar and only 26.5% eclosed to adults. Nymphal development rate and size were not impacted by N. maddoxi infection. These results indicate that N. maddoxi infection can negatively impact the lifespan of adult females, female fecundity, egg viability, and nymphal survival, which we hypothesize would negatively impact H. halys population densities.


Asunto(s)
Heterópteros/parasitología , Control de Insectos , Nosema/fisiología , Control Biológico de Vectores , Animales , Femenino , Fertilidad , Heterópteros/crecimiento & desarrollo , Longevidad , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/parasitología
20.
Environ Entomol ; 48(5): 1214-1222, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31501859

RESUMEN

We collected data on mortality of late-instar gypsy moth, Lymantria dispar (L.), from outbreak populations over 4 wk in June 2017 at 10 sites in the New England region of the United States, along with estimated rainfall at these sites. Deposition of airborne conidia of the fungal pathogen, Entomophaga maimaiga Humber, Shimazu & R.S. Soper, was measured at these same sites as well as at seven other locations in New England. We also quantified the geographical distribution of gypsy moth-caused defoliation in New England in 2017 and 2018 from Landsat imagery. Weekly mortality of gypsy moth larvae caused by E. maimaiga correlated with local deposition of conidia from the previous week, but not with rainfall. Mortality from this pathogen reached a peak during the last 2 wk of gypsy moth larval development and always exceeded that caused by LdNPV, the viral pathogen of gypsy moth that has long been associated with gypsy moth outbreaks, especially prior to 1989. Cotesia melanoscela (Ratzeburg) was by far the most abundant parasitoid recovered and caused an average of 12.6% cumulative parasitism, but varied widely among sites. Deposition of E. maimaiga conidia was highly correlated with percent land area defoliated by gypsy moths within distances of 1 and 2 km but was not significantly correlated with defoliation at distances greater than 2 km. This is the first study to relate deposition of airborne conidia of E. maimaiga to mortality of gypsy moths from that agent.


Asunto(s)
Entomophthorales , Mariposas Nocturnas , Animales , Larva , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...